circle tangents

[SQA] 1. The circle shown has equation

$$(x-3)^2 + (y+2)^2 = 25.$$

Find the equation of the tangent at the point (6, 2).

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	4	С	CN	G11		1998 P1 Q4
• (Centre = (3,-2)				
•2	$m_{rad} = \frac{4}{3}$					
•3	$m_{tgt} = -\frac{3}{4}$					
•	$y-2=-\frac{3}{4}($	x-6)				

- [SQA] 2. Circle P has equation $x^2 + y^2 8x 10y + 9 = 0$. Circle Q has centre (-2, -1) and radius $2\sqrt{2}$.
 - (a) (i) Show that the radius of circle P is $4\sqrt{2}$.
 - (ii) Hence show that circles P and Q touch.
 - (b) Find the equation of the tangent to the circle Q at the point (-4, 1).
 - (*c*) The tangent in (*b*) intersects circle P in two points. Find the *x*-coordinates of the points of intersection, expressing you answers in the form $a \pm b\sqrt{3}$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	2	С	CN	G9	proof	2001 P1 Q11
<i>(a)</i>	2	A/B	CN	G14		
(b)	3	С	CN	G11	y = x + 5	
(C)	3	С	CN	G12	$x = 2 \pm 2\sqrt{3}$	
•1 •2 •3 •4	ic: inte ss: finc ss: finc pd: con centres	erpret ce l radius l sum of npare w	ntre of o of circle radii ith dista	circle (P) e (P) ance between	• ¹ $C_{\rm P} = (4,5)$ • ² $r_{\rm P} = \sqrt{16 + 25 - 9} = \sqrt{32}$ • ³ $r_{\rm P} + r_{\rm Q} = 4\sqrt{2} + 2\sqrt{2} = 6$ • ⁴ $C_{\rm P}C_{\rm Q} = \sqrt{6^2 + 6^2} = 6\sqrt{100}$ touch"	$\frac{1}{2} = 4\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ and "so
•5 •6 •7	ss: finc ss: use ic: stat	d gradier $m_1m_2 =$ se equati	nt of rac = -1 on of ta	lius ngent	• ⁵ $m_{\rm r} = -1$ • ⁶ $m_{\rm tgt} = +1$ • ⁷ $y - 1 = 1(x + 4)$	
• ⁸ • ⁹ • ¹⁰	ss: sub pd: exp pd: solv	stitute li press in s ve (quad	near in tandarc ratic) eo	to circle l form quation	• ⁸ $x^{2} + (x+5)^{2} - 8x - 10(x-5)^{9}$ • ⁹ $2x^{2} - 8x - 16 = 0$ • ¹⁰ $x = 2 \pm 2\sqrt{3}$	(+5) + 9 = 0

[SQA] 3. The point P(2,3) lies on the circle $(x + 1)^2 + (y - 1)^2 = 13$. Find the equation of the tangent at P.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	4	С	CN	G11	2y + 3x = 12	2002 P1 Q1
• ¹ • ² • ³ • ⁴	ic: inte circle ss: kno ss: kno ic: stat	erpret c ow to fin ow to fin æ equati	entre fr d gradi d perp. on of ta	rom equ. of ent of radius gradient ngent	• ¹ $C = (-1, 1)$ • ² $m_{rad} = \frac{2}{3}$ • ³ $m_{tgt} = -\frac{3}{2}$ • ⁴ $y - 3 = -\frac{3}{2}(x - 2)$	

4

4

3

[SQA] 4.

- (*a*) Show that the point P(5, 10) lies on circle C₁ with equation $(x + 1)^2 + (y 2)^2 = 100$.
- (*b*) PQ is a diameter of this circle as shown in the diagram. Find the equation of the tangent at Q.

(c) Two circles, C_2 and C_3 , touch circle C_1 at Q.

The radius of each of these circles is twice the radius of circle C_1 .

Find the equations of circles C_2 and C_3 .

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	1	С	CN	A6	proof	2009 P2 Q4
<i>(b)</i>	5	С	CN	G11	3x + 4y + 45 = 0	
(C)	4	А	NC	G15	$(x-5)^2 + (y-10)^2 = 400,$	
					$(x+19)^2 + (y+22)^2 = 400$	
•1 •2 •3 •4 •5 •6 •6 •7 •8 •9 •10	pd: sub ic: finc ss: use ss: kno radius ic: finc ic: stat ic: stat ss: kno ic: stat	stitute d centre mid-po ow to, a d gradier e equati re radius ow how re equati	int resu and find nt of tar on of ta to find of on of of	It for Q d gradient of ngent ngent centre ne circle	• ¹ $(5+1)^2 + (10-2)^2 = 100$ • ² centre = $(-1,2)$ • ³ Q = $(-7,-6)$ • ⁴ $m_{rad} = \frac{8}{6}$ • ⁵ $m_{tgt} = -\frac{3}{4}$ • ⁶ $y - (-6) = -\frac{3}{4}(x - (-7))$ • ⁷ radius = 20 • ⁸ centre = $(5,10)$ • ⁹ $(x-5)^2 + (y-10)^2 = 400$ • ¹⁰ $(x+19)^2 + (y+22)^2 = 400$))))))

4

1

[SQA] 5. Find the equation of the tangent at the point (3,1) on the circle $x^2 + y^2 - 4x + 6y - 4 = 0$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4		
	5	С	CN	G11		1991 P1 Q8		
• $t = t = t = t = t = t = t = t = t = t $								

- [SQA] 6. (*a*) Find the equation of AB, the perpendicular bisector of the line joing the points P(-3,1) and Q(1,9).
 - (*b*) C is the centre of a circle passing through P and Q. Given that QC is parallel to the *y*-axis, determine the equation of the circle.
 - (*c*) The tangents at P and Q intersect at T.

Write down

- (i) the equation of the tangent at Q
- (ii) the coordinates of T.

A	Q(1,9)
	C
P(-3,1)	

2

4

3

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	4	C	CN	G7	x + 2y = 9	2000 P2 Q2
<i>(b)</i>	3	С	CN	G10	$(x-1)^2 + (y-4)^2 = 25$	
(C)	2	С	CN	G11, G8	(i) $y = 9$, (ii) T(-9,9)	
•1 •2 •3 •4 •5 •6 •7 •8 •9	ss: knc pd: pro ss: knc ic: stat ic: inte pd: pro ic: stat ic: inte ss: knc	ow to use cess gra ow how t erpret "p cess rad cess rad e equ. o erpret di ow to use	e midpo dient of to find p f line parallel ius f circle agram e equ. o	pint PQ perp. gradient to <i>y</i> -axis" f AB	•1 midpoint = $(-1, 5)$ •2 $m_{PQ} = \frac{9-1}{1-(-1)}$ •3 $m_{\perp} = -\frac{1}{2}$ •4 $y - 5 = -\frac{1}{2}(x - (-1))$ •5 $y_{C} = 4$ stated or implied b •6 radius = 5 or equiv. stated or implied by •7 •7 $(x - 1)^{2} + (y - 4)^{2} = 25$ •8 $y = 9$ •9 $T = (-9, 9)$	y ● ⁷

[SQA]

7.

Two curves, y = f(x) and y = g(x), are called orthogonal if, at each point of intersection, their tangents are at right angles to each other.

(a) Diagram 1 shows the parabola with equation $y=6+\frac{1}{9}x^2$ and the circle M with equation $x^2+(y-5)^2=13$. These two curves intersect at (3, 7) and (-3, 7).

Prove that these curves are orthogonal.

- (b) Diagram 2 shows the circle M, from
 (a) above, which is orthogonal to the circle N. The circles intersect at (3, 7) and (-3, 7).
 - (i) Write down the equation of the tangent to circle M at the point (-3, 7).
 - (ii) Hence find the equation of circle N.

Part	Marks	Level	Calc	Content	Answer	U2 OC4